
Methods Ecol Evol. 2026;00:1–18.	﻿�   | 1wileyonlinelibrary.com/journal/mee3

Received: 2 September 2025  | Accepted: 8 January 2026

DOI: 10.1111/2041-210x.70252  

R E S E A R C H  A R T I C L E

OccuGAMs: Non-linear occupancy and abundance modelling 
with imperfect detection

Johannes Maria Sassen1  |   Zachary Amir1  |   Nicholas Clark2  |    
Matthew Scott Luskin1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2026 The Author(s). Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1School of the Environment, University 
of Queensland, St. Lucia, Queensland, 
Australia
2School of Veterinary Science, University 
of Queensland, Gatton, Queensland, 
Australia

Correspondence
Johannes Maria Sassen
Email: joopsassen@icloud.com

Matthew Scott Luskin
Email: m.luskin@uq.edu.au

Funding information
Australian Research Council, Grant/Award 
Number: #DE210101440

Handling Editor: Phil J. Bouchet

Abstract
1.	 Hierarchical occupancy and abundance models (HOAMs) have become a leading 

approach for inferring wildlife population dynamics because they explicitly ac-
count for imperfect detection. HOAMs are suitable for sampling approaches that 
produce detection histories from repeated visits to the same sites, including di-
rect observations (e.g. bird point counts), indirect observations (e.g. tracks, dung) 
and remote and passive sensors (e.g. camera traps, acoustic recorders).

2.	 Wildlife often exhibits non-linear temporal trends or threshold-like responses to en-
vironmental conditions. However, traditional HOAMs address non-linearity crudely 
using global polynomial functions, despite well-documented limitations. Generalised 
additive models (GAMs) provide a more flexible approach to non-linearity, allowing 
smooth data-driven estimation through basis functions and penalised splines. Yet, 
GAMs have remained sparsely adopted in hierarchical occupancy modelling, in part 
due to the need for custom code in Bayesian modelling languages.

3.	 We demonstrate the applicability of GAMs within the occupancy and abundance 
modelling framework (hereafter ‘OccuGAMs’) by comparing traditional HOAMs 
with polynomials to OccuGAMs. In simulations, OccuGAMs recovered non-linear 
relationships more accurately and more often, scoring better on energy and 
variogram metrics and produced more stable responses at smaller sample sizes. 
Polynomials performed well in some scenarios but were less generalisable, mak-
ing OccuGAMs the more robust overall choice, especially when there is no a priori 
guidance about the functional form.

4.	 Limitations of OccuGAMs include interpretability of model parameters and sen-
sitivity to the choice and number of basis functions, which can be assessed with 
diagnostic tools. To promote wider accessibility, we provide code for OccuGAM 
implementation in JAGS and Stan as well as in the R packages flocker and mvgam.
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1  |  INTRODUCTION

The ability to study animal populations in their natural habitats 
has been revolutionised by recent advances in wildlife monitoring 
technologies like camera traps and acoustic sensors (Burton 
et al., 2015; Lahoz-Monfort & Magrath, 2021; Rhinehart et al., 2020; 
Tabak et al., 2019). These tools enable the affordable collection of 
more observations across a range of species, often from remote or 
inaccessible areas (Bruce et al., 2025). Wildlife ecologists increasingly 
rely on advanced statistical models to analyse the large detection 
histories produced by cameras and eco-acoustics, such as species 
distribution modelling, hierarchical occupancy and abundance 
modelling, dynamic population monitoring, and structural equation 
modelling  (Goldstein et  al.,  2024; Burton et  al.,  2015; Rozylowicz 
et  al.,  2024; Mendes & Luskin 2025). Hierarchical models are 
especially common and powerful because they explicitly separate 
the imperfect detection process from the ecological process that 
gave rise to the observation (i.e. state variables like occupancy and 
abundance) (MacKenzie et al., 2002; Royle, 2004). This is important 
because species detectability varies with environmental covariates 
(e.g. visibility in different vegetation types) and local behaviours, 
which can bias estimates of state variables and habitat associations 
(Gu & Swihart, 2004; Kéry & Schmidt, 2008).

Hierarchical occupancy and abundance modelling (hereafter 
'HOAMs') traditionally use generalised linear models (GLMs) in 
the detection and state variable equations (Kéry & Schaub,  2011; 
MacKenzie et al., 2002). GLMs are comparatively rigid and subop-
timal for capturing the shape of non-linear habitat associations or 
temporal trends. A common strategy to address this limitation is to 
incorporate a polynomial term for the covariates of interest (Briscoe 
et al., 2021; Dehaudt et al., 2022; Ruiz-Gutiérrez et al., 2010; Warton 
et  al.,  2017; Wearn et  al.,  2017). However, polynomial approxi-
mations exhibit several well-documented limitations. Polynomial 
terms introduce global basis functions, which constrain the re-
sponse curve to exhibit smooth but inherently non-local behaviour 
(Harrell, 2015; Magee, 1998). This often results in implausible sym-
metries, boundary instability and heightened sensitivity to outli-
ers (Aho et al., 2014; Gelman & Imbens, 2019; Guisan et al., 2002; 
Harrell, 2015; Magee, 1998). Moreover, polynomial models are typi-
cally unregularised, lacking mechanisms to enforce local smoothing. 
As a result, data in one region of the covariate space can exert a dis-
proportionate influence on the fit in distant regions (Harrell, 2015; 
Magee, 1998). Despite these serious limitations, polynomials remain 
a widely used method for modelling non-linearity.

HOAMs with linear or polynomial effects have been widely and 
successfully applied across ecological systems, but more complex 
non-linear relationships are also likely to be common. Threshold-like 
responses have been observed in several systems, including in rela-
tionships between the abundance of large-bodied animals and prox-
imity to human infrastructure (Potvin et al., 2005), American forest 
birds and habitat fragmentation (Morante-Filho et al., 2015; Suarez-
Rubio et  al.,  2013) and habitat-generalist tropical mammals and 

their proximity to food subsidies from oil palm plantations (Luskin, 
Albert, & Tobler, 2017; Luskin, Brashares, et al., 2017). More com-
plex non-linear patterns can also arise through interacting ecological 
and anthropogenic processes. For example, human shield effects 
can lead to elevated mesopredator occupancy in areas where apex 
predators avoid humans, producing non-monotonic or hump-shaped 
responses across disturbance gradients (Heit et  al.,  2024; Moll 
et al., 2018). Detecting such nuanced responses can improve eco-
logical understanding and management outcomes but may be over-
looked in some fields (Bolker et al., 2013; Heit et al., 2024; Dehaudt 
et al., 2025). For example, a review of 162 animal ecology studies 
found that only 14.2% reported a test for non-linearity, suggesting 
that linearity assumptions rarely receive sufficient attention when 
fitting GLMs (Heit et al., 2024). Here, we assess approaches for in-
corporating flexible, non-linear relationships into HOAMs to better 
represent ecological complexity.

An underutilised approach to non-linear HOAMs is the integra-
tion of generalised additive models (GAMs) (Bled et al., 2013; Kéry & 
Royle, 2020). Such ‘OccuGAMs’ extend the HOAM framework by al-
lowing smooth, data-driven estimation of non-linear effects through 
penalised splines. These smooth functions are expressed as a linear 
combination of basis functions:

where b� are evaluated basis functions, �� are their coefficients, K is 
the number of basis functions and f(X) is the resulting smooth function 
of the covariate X. In a Bayesian framework, the coefficient vector � is 
often assigned a multivariate normal distribution centred at zero with a 
precision matrix proportional to the weighted sum of penalty matrices 
(Wood, 2016):

where S� is the penalty matrix, Λ� is a smoothing parameter and � is 
the vector of spline coefficients. The index � denotes distinct penalty 
components rather than individual basis functions. These are neces-
sary to support adaptive or tensor product smooths and to penalise 
null space components, ensuring propriety of the associated Gaussian 
priors (Wood, 2017). The penalty matrix defines how the function is 
penalised for roughness, while the smoothing parameter controls the 
strength of this penalty. Together, the penalty matrix and smoothing 
parameter control the flexibility of the fitted function by penalising ex-
cessive ‘wiggliness’ (Wood, 2017). Alternative prior formulations are 
also possible; for example, a random walk prior for � can be used with 
a large number of knots to achieve similar smoothness control (Lee 
et al., 2024). Unlike polynomials, where each coefficient is estimated 
independently for a fixed transformation of the covariate, penalised 
spline coefficients are estimated jointly (Wood, 2017). As a result, the 
model can adapt smoothly to non-linear patterns in data while limiting 

(1)f(X) =

K∑
� = 1

��b� (X)

(2)� ∼ MVN

⎛
⎜⎜⎝
0,

��
�

S� ×Λ�

�−1⎞
⎟⎟⎠

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210x.70252 by M

atthew
 L

uskin - Info A
ccess &

 D
elivery Service , W

iley O
nline L

ibrary on [06/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 3SASSEN et al.

overfitting through regularisation (Wood, 2017). Moreover, because 
the penalised spline basis functions used in GAMs have local support 
(they are only active over a limited portion of the covariate range), the 
influence of individual data points remains localised (Wood,  2017). 
This is valuable when the aim is to understand the functional form of 
habitat or detection associations (Strebel et al., 2014), such as when 
an ecological threshold induces a sharp increase, decrease or a pla-
teauing shape (Morse et al., 2003; Rhodes et al., 2008). For example, 
in Southeast Asia, pig-tailed macaques and wild boar are habitat gen-
eralist species that have been shown to potentially reach hyperabun-
dance (i.e. punctuated, extreme increases in abundance) in degraded 
areas where they raid crops, such as near oil palm plantations (Moore 
et al., 2023), rendering them a compelling case for exploring potential 
non-linear responses.

OccuGAMs have rarely been featured in the wildlife ecol-
ogy literature to date, and their use in hierarchical modelling has 
been largely restricted to modelling spatial autocorrelation (Bled 
et  al.,  2013; Rushing et  al.,  2019, 2020; Strebel et  al.,  2014). This 
may partly be due to the advanced skillset required to fit these mod-
els, namely, custom-built formulas in a Bayesian modelling frame-
work and solved in applications such as JAGS (Plummer, 2003), Stan 
(Carpenter et al., 2017) or Nimble (de Valpine et al., 2017). Coding 
expertise in Bayesian modelling languages has been a common hur-
dle for ecologists more generally (Bolker et al., 2013). Importantly, 
recent R packages (mvgam and flocker) now make it possible to fit 
types of HOAMs with smooth functions using ‘out-of-the-box’ 
functionality in familiar interfaces (Clark & Wells, 2023; Socolar & 
Mills,  2023). Specifically, mvgam supports abundance (N-mixture) 
and flocker supports occupancy modelling (Table 1). However, a di-
rect comparison between ‘OccuGAMs’ and their GLM counterparts 

is currently lacking, representing a critical gap in understanding their 
relative performance and ecological applicability.

Here, we compare model accuracy and interpretability of tra-
ditional HOAMs with linear and polynomial GLM component  to 
OccuGAMs using simulated and real data sets. We begin by sys-
tematically evaluating each model's ability to recover functional 
forms from simulated data, where the genuine species–disturbance 
relationship is explicitly defined. This allows us to quantify model 
performance in reconstructing the original response curves across 
varying degrees of complexity, from linear to highly non-linear 
trends. Second, we use a case study to examine the applicabil-
ity of these approaches to empirical data from camera trapping in 
Southeast Asia. This system is characterised by high rates of anthro-
pogenic pressures (Wilcove et al., 2013) and mammal communities 
that exhibit substantial variation in their response to these distur-
bances (Amir et al., 2022; Amir, Sovie, & Luskin, 2022). We investi-
gate the functional shape of responses to anthropogenic disturbance 
and assess the degree to which non-linear capabilities of OccuGAMs 
are warranted in this ecological context. We hypothesised that 
OccuGAMs, with their flexibility to model complex non-linear rela-
tionships, would outperform conventional models in accurately es-
timating species–disturbance relationships, particularly when those 
responses exhibit marked curvature or threshold-like behaviour. We 
further posit that such non-linear patterns are common in species' 
ecological responses, especially among a small set of focal group-
living generalist species known to reach hyperabundance. Finally, 
we provide all code in both the Stan and JAGS languages, and im-
plementation in mvgam (Clark & Wells, 2023) and flocker (Socolar & 
Mills, 2023), to support broader use of these methods in hierarchical 
modelling.

TA B L E  1  Overview of current R packages and software for estimating hierarchical occupancy or N-mixture models with predictors 
modelled using generalised additive models (OccuGAMs). mvgam and flocker are two recently released R packages that provide out-of-the-
box functionality; mvgam supports abundance modelling and flocker supports occupancy modelling but note that neither package supports 
both.

Software Description Release Sampler Occupancy Abundance Formula interface

mvgam Fit dynamic GAMs; 
State-space models 
with highly nonlinear 
predictor effects

2023 Hamiltonian Monte Carlo 
(Stan interface)

— ✓ Yes

flocker Fit a variety of 
occupancy models using 
BRMS package syntax

2024 Hamiltonian Monte Carlo 
(Stan interface)

✓ — Yes

JAGS/WinBUGS General purpose 
Bayesian modelling 
software

2003 Gibbs sampling ✓ ✓ No (manual specification)

Stan General purpose 
Bayesian modelling 
software

2017 Hamiltonian Monte Carlo ✓ ✓ No (manual specification)

Nimble General purpose 
Bayesian modelling 
software enabling 
enhanced sampler 
customisation

2017 Multiple ✓ ✓ No (manual specification)
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4  |    SASSEN et al.

2  | METHODS

2.1  | GAM-­based hierarchical occupancy and 
abundance models (HOAMs)

We begin by describing the general model specifications to  
link GAMs and HOAMs in a unified analytical framework and  
then detail how we applied the approach to (i) a simulation study and 
(ii) an empirical case study using a large camera trapping data set.

2.1.1  |  General formulation: Occupancy GAMs

We model species occurrence using a hierarchical occupancy frame-
work with a latent state model and an observation model. For each 
sample site i, the latent occupancy state zi is a Bernoulli random vari-
able with probability � i.

In conventional occupancy models, the occurrence probability 
� i is linked to environmental covariates through a logit link func-
tion. Most commonly, this relationship is specified using either a 
linear predictor:

or a polynomial extension to accommodate simple forms of 
non-linearity:

Here, �0 denotes the intercept, �1, … , �n are regression coefficients 
and Xi is a site-level covariate. Polynomial terms capture curvature but 
impose strong global structure and often fail to represent locally non-
linear relationships. To relax these constraints, smooth terms can be 
incorporated into the linear predictor:

Here, s
(
Xi
)
 is a penalised spline smooth, represented as a linear combi-

nation of basis functions (e.g. thin-plate regression splines). This is con-
ceptually equivalent to replacing the GLMs in formulae 4 and 5 with a 
GAM. Detection probability pi,j for site i  and survey j can similarly be 
modelled using a GAM rather than a GLM to account for non-linear 
covariate effects on detectability:

where �0 is the intercept, Zi,j represents site- or survey-level covariates 
(e.g. effort or observer) and s

(
Zi,j

)
 is a penalised spline smooth. The 

observed detection yi,j is then modelled as a Bernoulli random variable 
conditional on the true occupancy state zi:

2.1.2  |  General formulation: N-mixture GAMs

N-mixture models are an extension of occupancy models used to 
model counts rather than binary detection data (Royle, 2004). The 
latent state is the abundance Ni at site i , typically modelled as a 
Poisson random variable with mean �i denoting the expected mean 
abundance, where covariate effects can be expressed using either 
linear predictors or smooth terms as seen in Section 2.1.1:

Observed counts yi,j for site i  and survey j are then modelled 
conditionally on Ni, where detection probability pi,j can be modelled 
using a GAM or a GLM:

2.2  |  Simulation study

To evaluate the ability of different model formulations to detect non-
linear responses in species' responses to anthropogenic disturbance, 
we conducted a series of simulation experiments using the mvgam 
(Clark & Wells, 2023) and flocker R packages (Socolar & Mills, 2023), 
which both employ Stan as their backend. The mvgam package was 
used to simulate and fit N-mixture models, whereas flocker was used 
for occupancy models. The simulated relationships included both 
simple (linear) and complex (e.g. piecewise or non-monotonic) trends 
selected to reflect ecologically realistic patterns (Luskin, Brashares, 
et al., 2017; Moore et al., 2023; Spake et al., 2022).

2.2.1  |  Data

The key elements of the simulation design are visualised in Figure 1. For 
abundance, we simulated species count histories for four hypotheti-
cal species, differing in mean abundance (� = 100,� = 40 or � = 2), 
base detection probability (bp0 = 0.7 or bp0 = 0.2) and response to 
detection covariate (i.e. is the detection probability of the species lin-
early or non-linearly related to a detection covariate). For each site, 
latent abundances were drawn from a Poisson distribution with mean 
�i,k,l defined as the sum of the species-specific mean abundance �k,  
a covariate effect xi,l and added Gaussian noise �i,k,l with standard de-
viation proportional to the mean abundance (0.2�k) for a simulated 
species k, state covariate response l and site i. The covariate–abun-
dance relationship was modelled using one of six functional forms: 

(3)zi ∼ Bernoulli
(
� i

)

(4)logit
(
� i

)
= �0 + �1Xi

(5)logit
(
� i

)
= �0 + �1Xi + �2X

2
i
+ … + �nX

n
i

(6)logit
(
� i

)
= �0 + s

(
Xi
)

(7)logit
(
pi,j

)
= �0 + s

(
Zi,j

)

(8)yi,j ∣ zi ∼ Bernoulli
(
zi × pi,j

)

(9)Ni ∼ Poisson
(
�i
)

(10)

log
(
�i
)
= �0 + �1Xi + … + �nX

n
i

∣ log
(
�i
)
= �0 + s

(
Xi
)

(11)yi,j ∣ Ni ∼ Binomial
(
Ni , pi,j

)

(12)

logit
(
pi,j

)
= �0 + �1Zi + … + �nZ

n
i

∣ logit
(
pi,j

)
= �0 + s

(
Zi,j

)
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    | 5SASSEN et al.

(1) monotonic threshold, (2) linear, (3) cubic polynomial, (4) piecewise 
threshold, (5) hyperabundance and (6) non-monotonic threshold 
(Figure 1a). Observed counts yi,j,k,l for visit j at site i were generated 

using a binomial observation model, where each count was drawn 
from a binomial distribution with number of trials equal to the la-
tent abundance Ni,k,l and the success probability pi,j,k,l reflected the 

F IGURE  1 Conceptual overview of the simulation study design. (a) The six functional forms used to model the covariate–response 
relationship. (b) Simulated species with species-specific parameters. (c) Data generation workflow for abundance and occupancy simulations. 
For abundance, latent abundance Ni,k,l at site i  was drawn from a Poisson distribution with mean �i,k,l = �k + xi,l + �i,k,l, where �k is the species-
specific mean abundance, xi,l is the covariate effect and �i,k,l ∼ N

(
0, 0.2�k

)
. Observed counts yi,j,k,l were generated from a binomial distribution 

with Ni,k,l trials and detection probability pi,j,k. Detection probabilities reflected a species-specific baseline detection parameter bp0, k modified 
by a detection covariate whose effect was applied on the logit scale, producing site- and visit-specific detection probabilities. For occupancy, 
latent occupancy states zi,k,l were drawn from a Bernoulli distribution with probability � i,k,l = b� ,k + xi,l + �i,k,l, where b� ,k is a species-specific 
base occupancy probability and �i,k,l ∼ N(0, 0.2) . Detection histories yi,j,k,l were generated from a Bernoulli model with success probability 
pi,j,k,l × zi,k,l. We simulated 4800 data sets (96 scenarios × 50 replicates) across designs with i = 10, 25, 50 or 100 sites and j = 10 or 20 visits, for 
both abundance and occupancy.
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6  |    SASSEN et al.

species-specific baseline detection probability bp0, k modified by the 
effect of a detection covariate. The effect of the detection covari-
ate could follow either a linear or non-linear relationship, depending 
on species, producing site- and visit-specific detection probabilities 
(Figure  1b). We simulated a range of study designs varying in the 
number of sites and replicates to represent small (10 sites × 10 visits), 
medium (25 sites × 10 visits), large (50 sites × 10 visits) and very large 
(100 sites × 20 visits) data sets. Each scenario was replicated 50 times, 
yielding 4800 unique count histories.

For occupancy, the simulation design was identical in terms of 
sites, visits and covariates, but we simulated presence–absence data 
instead of counts. Each species was assigned a mean occupancy 
probability (bψ) to which the effect of the covariate and additional 
random noise was added, analogous to the mean abundance param-
eter for the count histories. Latent states zi,k,l were then drawn from 
a Bernoulli model with success probability � i,k,l and observations 
from a Bernoulli model with success probability pi,j,k,l × zi,k,l. Across all 
scenarios and replicates, this procedure yielded 4800 unique occu-
pancy data sets, directly comparable in structure to the abundance 
simulations.

2.2.2  |  Models

For each simulated data set, we estimate four distinct N-mixture and 
occupancy model formulations that were univariate in the state for-
mula: (1) a traditional model with linear terms; (2) a traditional model 
with quadratic terms; (3) a traditional model with a third-degree poly-
nomial term; and (4) an OccuGAM with thin-plate regression splines. 
Each of these model types was fitted with two alternative detection 
sub-models: one specifying a linear effect of the detection covariate 
and one using a GAM. This yielded a total of eight model variants per 
data set, for a total of 76,800 models estimated. All N-mixture mod-
els were implemented using the mvgam() function from the mvgam R 
package (Clark & Wells, 2023), specifying the nmix() family. Occupancy 
models were implemented using the flock() function from the flocker 
R package (Socolar & Mills, 2023). We used weakly informative priors 
throughout. Gaussian or Student-t priors were placed on intercepts 
and regression coefficients. For models including smooth terms, ad-
ditional Student-t priors were assigned to the corresponding smooth-
ing parameters. In occupancy models, these priors acted directly on 
the standard deviation (SDs) hyperparameters controlling smooth-
ness, whereas in N-mixture models fitted via mvgam, priors are set 
on the latent trend coefficients and associated penalty structure. We 
ran four chains of 1000 (N-mixture) and 5000 (occupancy) iterations, 
discarding the first 200 and 1000, respectively, as burn-in.

2.2.3  |  Evaluation

The ability of each model formulation to recover the true shape 
of the response was evaluated using two proper scoring rules: the 
energy score (Gneiting & Raftery,  2007) and the variogram score 

(Scheuerer & Hamill, 2015). Importantly, both scores are computed 
from the full predictive distribution (i.e. the full set of posterior 
predictive MCMC draws) rather than from point estimates of the 
parameters. The energy score quantifies the overall discrepancy 
between the predicted distribution and true values, capturing 
differences in both location and spread and penalising predictions 
that are biased or that underestimate or overestimate uncertainty 
(Gneiting & Raftery,  2007). The variogram score evaluates 
discrepancies in pairwise distances among predictions, making it 
particularly informative for assessing whether a model correctly 
captures smoothness or correlation structure in the underlying 
response surface (Scheuerer & Hamill, 2015). Assessing both scores 
provides a comprehensive framework for evaluating the ability of 
the chosen statistical model to recover the true curve, where lower 
energy and variogram scores indicate better alignment with the 
underlying structure of the data. Energy and variogram scores were 
computed using the es_sample() and vs_sample() functions from the 
scoringRules R package (Jordan et al., 2019), respectively. To ensure 
all comparisons were valid, we excluded models with any parameter 
�R > 1.2.

We also evaluated the effects of alternative detection models 
(linear or GAM) on estimates of latent abundance N and occupancy 
probability � using the normalised root mean squared error (NRMSE) 
between simulated true values and model predictions. NRMSE was 
used in place of energy or variogram scores because it is sensitive to 
absolute deviations from the truth and therefore penalises system-
atic over- or underestimation, even when the fitted response curve 
has the correct shape. As a result, models that recover the correct 
functional form of the state process but misestimate ecological 
quantities due to misspecified detection are appropriately penalised 
with higher NRMSE values.

2.3  |  Case studies: Tropical mammal responses to 
anthropogenic disturbances

To analyse camera trap data, we constructed hierarchical occupancy 
and N-mixture (i.e. abundance) models using basis-function formula-
tions to model non-linear relationships between state variables and 
disturbance covariates. N-mixture models are particularly sensitive to 
violations of population closure assumptions, which can inflate abso-
lute density estimates and produce to biased population inferences 
(Link et al., 2018), so we focus on interpreting abundance patterns 
only as directional responses to covariates; that is, relative abun-
dance (Gilbert et al., 2021). We built these models in JAGS because it 
is the most used tool for wildlife ecologists (Kéry & Royle, 2020), but 
Nimble or Stan would have been equally appropriate.

2.3.1  |  Data

We analysed data from 21 camera-trapping surveys conducted in 10 
lowland tropical forest landscapes in Southeast Asia, including three 
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    | 7SASSEN et al.

from Sumatra, two from Borneo, two from Peninsular Malaysia, two 
from Thailand and one from Singapore. Landscapes included a mix of 
protected areas, nearby production forests and smaller forest patches. 
Detailed descriptions of landscape and deployment methods relevant 
to this data set are provided in Amir, Moore, et al.  (2022) and Amir, 
Sovie, and Luskin (2022) but we include a brief summary here for clarity.

Each landscape was surveyed with 22–112 unbaited infrared 
camera traps, positioned 20–30 cm above ground along wildlife 
trails. To address differences in camera spacing (typically >1 km in 
extensive forest blocks and <500 m in small fragments), we aggre-
gated trap locations into 3-km2 hexagonal sampling units. This resa-
mpling generated a spatially standardised data set, reducing spatial 
pseudo-replication and producing estimates of occupancy and 
abundance that were not confounded by variation in camera spac-
ing (Amir, Moore, et al., 2022; Amir, Sovie, & Luskin, 2022; Rayan & 
Linkie, 2020). Where more than one camera fell inside a unit, envi-
ronmental covariates were averaged, and detections were pooled 
across cameras. Consecutive records of the same species were 
treated as independent only if separated by at least 30 min (Rovero 
& Zimmermann, 2016). Data were then summarised into sampling 
occasions of 5 days to reduce false absences (Brodie et al., 2018). 
Permission to sample locations was granted by the relevant local 
authorities. In Singapore, permits were issued by the National Parks 
Board (NParks). In Indonesia, sampling permissions were granted by 
the Indonesian Institute of Sciences (LIPI), the Ministry of Forestry 
(Kemenhut) and the Ministry of Research and Technology (RISTEK) 
for Bukit Barisan Selatan, Kerinci Seblat and Gunung Leuser, respec-
tively. Permissions to sample at Lambir Hills were provided by the 
Sarawak Forestry Corporation and the Sarawak Biodiversity Centre. 
In Peninsular Malaysia, permits for multiple sites were issued by the 
Forestry Research Institute of Malaysia (FRIM). Sampling at Danum 
Valley was approved by the Sabah Biodiversity Centre (SaBC), the 
Sabah Wildlife Department and the Danum Valley Management 
Committee (DVMC). In Thailand, permissions were granted by the 
Department of National Parks, Wildlife and Plant Conservation 
(DNP) and the Ministry of Natural Resources and Environment 
(MNRE) for Khao Yai National Park and Khao Banthat National Park.

We modelled the occupancy and abundance of pig-tailed ma-
caques (Macaca nemestrina), wild boar (Sus scrofa), sambar deer 
(Rusa unicolor) and muntjak deer (genus Muntiacus) in heteroge-
neous environments. We produced both count history matrices for 
N-mixture models and detection history matrices for occupancy 
models (Mendes & Luskin, 2025). We included four measures of an-
thropogenic disturbance as covariates: forest integrity (Grantham 
et al., 2020), the human footprint index (Venter et al., 2016), oil palm 
cover (Miettinen et al., 2016) and forest cover (Hansen et al., 2013).

2.3.2  |  Models

For the occupancy analysis, we estimated the probability that a 
species was present in grid cell i  (3-km2 hexagons) within landscape 
g and year t. The latent state was modelled as

where zi is a Bernoulli random variable with probability � i, rep-
resenting the latent state in grid cell i . We model the occupancy 
probability � i as a smooth function of a single environmental co-
variate, with

where �0,(g,t) is a random intercept for each landscape g within year 
t and s

(
Xi
)
 is a thin-plate regression spline smooth. Each model in-

cludes only one disturbance covariate (i.e. percent oil palm, forest 
cover, forest integrity or human footprint), so X denotes the spe-
cific environmental variable used in that model. The smooth term 
s
(
Xi
)
 was represented using K = 5 thin-plate regression spline basis 

functions:

where K represents the number of basis functions, b� (∗) denote the 
basis functions and �� are their respective coefficients. Restricting 
the basis dimension to K = 5 constrains the maximum complexity 
of the smooth and reduces computation time (Large et  al.,  2013; 
Samhouri et al., 2017). To evaluate alternative representations of the 
covariate effect, we also estimated polynomial variants of increasing 
order:

where m = 1, 2, 3 corresponds to linear, quadratic and cubic forms, re-
spectively (Formula 16).

For the observation model, detections yi,j in grid cell i  during 
sampling window j were modelled conditional on the latent state 
zi and detection probability pi,j. Detection probability incorporated 
camera effort and an overdispersion random effect:

where ei,j accounts for residual spatial and temporal heterogeneity in 
detection (an overdispersion random effect, ODRE) (Amir, Sovie, & 
Luskin, 2022; Kéry & Royle, 2016) and � represents the standard de-
viation of the overdispersion random effect. Camera effort was de-
fined as the number of active cameras in grid cell i  during sampling 
window j  . We assumed population closure during the survey period 
(MacKenzie et al., 2002).

For the abundance analysis, we estimated the latent abundance 
Ni at site i  within landscape g and year t. The latent state was mod-
elled as a Poisson random variable:

(13)zi ∼ Bernoulli
(
� i

)

(14)logit
(
� i

)
= �0,(g,t) + s

(
Xi
)

(15)s
(
Xi
)
=
∑K

�=1

(
��b�

(
Xi
))

(16)logit
(
� i

)
= �0,(g,t) +

m∑
n

�nX
n
i

(17)yi,j ∣ zi ∼ Bernoulli
(
zi × pi,j

)

(18)logit
(
pi,j

)
= �0 + �1CameraEfforti,j + ei,j

(19)ei,j ∼ Normal(0, �)

(20)Ni ∼ Poisson
(
�i
)

(21)log
(
�i
)
= �0,(g,t) + s

(
Xi
)
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8  |    SASSEN et al.

where �0(g,t) is a landscape-year random intercept and s
(
Xi
)
 represents 

a thin-plate regression spline with K = 5 basis functions. As with occu-
pancy models, we also estimated three polynomial formulations (linear, 
quadratic, cubic) for each disturbance covariate:

where m = 1, 2, 3 corresponds to linear, quadratic and cubic forms, re-
spectively (Formula 22). Finally, the observation model was identical 
to that of the occupancy model in that it included an effect for camera 
effort and the ODRE. We assumed population closure during the sur-
vey period (MacKenzie et al., 2002).

2.3.3  |  Evaluation

We fit four models for each species–covariate combination: linear, 
quadratic, cubic and GAM (OccuGAM), yielding 64 occupancy 
models and 64 N-mixture models in total. We quantified the 
difference between the estimated relationships of GAM and 
non-GAM models by calculating the NRMSE relative to the 
GAM. NRMSE measures the deviation between trends, with 
larger values reflecting more deviation. NRMSE is a normalised 
metric, with the range of the fitted curve used as the quantity of 
normalisation. Comparisons of NRMSE are therefore relative and 
only meaningful between the different model types within a single 
species–covariate combination. We inspected model goodness of 
fit and overdispersion through calculating Bayesian p-values and 
C-hat values via posterior predictive checks (Conn et  al.,  2018; 
Gelman et  al.,  1996). Bayesian p-values between 0.25 and 0.75 
conventionally indicate adequate model fit, with values equalling 
0.5 deemed a ‘perfect fit’ (Conn et al., 2018; Gelman et al., 1996; 
Kéry & Royle, 2016). C-hat values are reflective of overdispersion; 
we treat C-hat values >1.1 as indicative of model overdispersion 
(Kéry & Royle, 2016). In addition, we compared model predictive 
performance through Leave-One-Out (LOO) cross-validation 
(Vehtari et al., 2017). LOO is a technique for assessing pointwise 
out-of-sample predictive accuracy by calculating the log-likelihood 
at the posterior simulations of the model parameters (Vehtari 
et al., 2017). We computed the expected log pointwise predictive 
density (elpd) for each model using the loo R package (Vehtari 
et  al.,  2017), and then compared the four model variants (GAM, 
linear, quadratic, cubic) for each species–covariate combination 
using the loo_compare function from the loo R package (Vehtari 
et al., 2017), which computes differences in elpd values alongside 
the standard deviations (σ) with the magnitude of the mean 
difference relative to σ used to assess the strength of evidence. 
Specifically, models with ∣Δelpd∣ >2σ were considered to have 

meaningful differences in predictive accuracy, and models with 
lower values indicate better predictive performance.

3  |  RESULTS

3.1  |  Functional shape recovery from 
simulated data

OccuGAMs outperformed the linear, quadratic and cubic 
formulations in recovering the true abundance and occupancy 
relationships across the full range of sample sizes (Figure 2; Figure S7). 
Mean energy ranks for OccuGAMs were stable across sample sizes, 
whereas the polynomial models improved with increasing data, 
reflecting a dependence on larger samples to accurately estimate 
curvature (Figure 2). Rankings based on the variogram score were 
broadly similar (Figure S7).

Across scenarios, polynomial models sometimes captured broad 
features of the non-linear response but often lacked the flexibility to 
recover more complex or irregular shapes (Figure 3). Some specific 
matches did occur; for example, the quadratic model approximated 
the monotonic threshold relationship very well (Figures  S10–S13). 
Polynomials performed worse when the true relationship was lin-
ear: both quadratic and cubic models produced higher energy ranks 
in that scenario for occupancy and abundance, indicating reduced 
accuracy in recovering the underlying shape (Figures  S10–S13 and 
S15). OccuGAMs were comparatively robust. They ranked within the 
top two models in the linear scenarios, trailing only the linear model 
(Figures  S10–S13), and maintained strong performance across all 
response shapes, with mean energy and variogram ranks rarely ex-
ceeding two (Figures S10–S13). By contrast, the performance of poly-
nomial models was more variable. Although OccuGAM performance 
was largely stable across sample sizes, species' mean abundance had a 
clear effect. In the N-mixture analysis, OccuGAMs performed worse 
for species two, which had a mean abundance of two (Figure S16).

Absolute performance declined for all models as sample size de-
creased, indicated by reductions in raw energy scores (Figures S8 and 
S9), consistent with reduced ability to reconstruct functional responses 
under limited data. Estimation of non-linear functions was unreliable at 
a sample size of 10 sites, with high variance and clear deviations from 
the true response (Figures S8 and S9). Performance improved substan-
tially at sample sizes of 25 and above, where most non-linear models 
recovered the main features of the generating functions. We note that, 
although OccuGAMs often had better energy and variogram scores, 
the absolute differences between estimated responses were often 
small, especially as sample sizes increased (Figures S8 and S9).

3.2  |  Impact of detection sub-­model on 
occupancy and abundance estimates

For N-mixture models, incorporating GAMs into the detection 
sub-model improved estimates of latent abundance when the 

(22)log
(
�i
)
= �0,(g,t) +

m∑
n

�nX
n
i

(23)yi,j ∣ Ni ∼ Binomial
(
pi,j ,Ni

)

(24)logit
(
pi,j

)
= � 0i + �1i × Camera Efforti,j + ei,j

(25)ei,j ∼ Normal(0, �)
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    | 9SASSEN et al.

true detection probability varied non-linearly with a detection 
covariate (Figure  4). Non-linear detection functions substan-
tially affected N-mixture model estimates, with linear detection 

sub-models generally yielding higher NRMSE and poorer recov-
ery of true abundance (Figure  4). Allowing the detection sub-
model to match the non-linear covariate through integrating a 

F IGURE  2 Energy rank across sample sizes for (a) occupancy and (b) abundance (N-mixture), comparing linear, quadratic, cubic and 
generalised additive models (GAM) hierarchical models. Panel titles indicate the sample size; very large (100 sites × 20 visits), large (50 × 10), 
medium (25 × 10) and small (10 × 10). Violin plots show the distribution of ranks across all simulated data set and model combinations. 
Models with any parameter �R > 1.2 were excluded. Lower ranks indicate better performance; black vertical lines denote mean ranks.

F IGURE  3 Model fits for a single simulated abundance data set from the non-monotonic scenario. This data set has a large sample size 
and non-linear detection covariate. The lines show posterior predictive means; shaded bands show 95% credible intervals. Latent site 
abundances (black points) and observed counts (small points) are shown. The energy scores for each model formulation highlight differences 
in ability to recover the true shape. In this example, all models contained a generalised additive models (GAM) in the detection formula.
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10  |    SASSEN et al.

GAM reduced NRMSE, improving fidelity of abundance estimates 
across state model formulations. N-mixture models using a linear 
detection sub-model to estimate a non-linear covariate were also 
more likely to produce unacceptable R̂ values: of 38,400 models, 
6320 had at least one parameter with �R > 1.2, and 4581 of these 
were linear detection models with the true detection covariate 
being non-linear (Table S2).

There were no clear differences between the various sub-model 
formulations in the occupancy model analysis. NRMSE was largely 
unaffected by the form of the detection covariate or detection sub-
model (Figure S14). Occupancy models were less likely to have pa-
rameters �R > 1.2 compared to the N-mixture models, with only 581 
models affected (Table S1).

3.3  |  Fitting traditional HOAMs and OccuGAMs to 
real data

This comparison of HOAMs with linear and polynomial terms versus 
OccuGAMs is different since the true relationship is unknown. There 
was no clear difference in model goodness of fit or overdispersion 
between OccuGAM and polynomial models (Tables S3 and S4). All 
N-mixture models had Bayesian p-values between 0.25 and 0.75 and 

C-hat values <1.1 indicating acceptable model fit and no evidence of 
overdispersion (Table S4).

Most models showed high alignment across species and vari-
ables, characterised by a consistent directionality of trends among 
the traditional models and OccuGAMs (Figure  5; Figures  S1–S3). 
Overall, habitat associations between occupancy and the four dis-
turbance covariates were less pronounced than for relative abun-
dance—the majority were flat or slightly increasing (Figures S1–S3). 
However, the notable exceptions were strong negative relationships 
for occupancy of sambar~oil palm and muntjak~oil palm (Figure 5c,d). 
We present the results from the N-mixture models in the main text 
and occupancy results in the Supporting Information.

NRMSE suggested the habitat association curve that most closely 
matched the one produced by the GAM varied depending on the spe-
cies and covariate. No systematic bias was observed favouring simpler 
models or more complex ones. Crucially, there were three exam-
ples in which the GAM deviated markedly from all model types: ma-
caque~forest cover (Figure S1a), muntjak~forest cover (Figure S1d) and 
macaque~human footprint (Figure S3a). In the first two examples, the 
GAM produced an initial flat relationship between relative abundance 
and forest cover, followed by a punctuated increase which was poorly 
approximated by both quadratic and cubic models (Figure S1a,d). In the 
latter (macaque~human footprint), there was a steep initial decline with 

F IGURE  4 The effect of detection probability on OccuGAMs. The y-axis shows the discrepancy between true latent abundance N 
and N-mixture model estimates across base detection probabilities 

(
bp0

)
, detection covariates (linear or non-linear) and detection model 

formulations (linear or generalised additive models [GAM]) measured by the normalised root mean squared error (NRMSE) (lower is better). 
NRMSE is calculated as the root of the mean squared difference between predicted and true N, normalised by the range of true N. Boxplots 
show NRMSE on the y-axis versus the eight model types on the x-axis, defined by crossing four state model forms with two detection model 
forms (linear, GAM). Models with any parameter �R > 1.2 were excluded. The non-linear detection covariate follows a U-shaped pattern 
(Figure 1; species 1 and 3).
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    | 11SASSEN et al.

F IGURE  5 Comparison of the relationships between occupancy (left column) and relative abundance (centre column) of Southeast Asian 
mammals (a: macaque monkeys, Macaca nemestrina, b: wild boar, Sus scrofa, c: sambar deer, Rusa unicolor, d: muntjac deer, genus Muntiacus) 
and oil palm cover from camera trapping at 10 landscapes and estimated using occupancy and N-mixture models with a linear, quadratic, 
cubic or smooth (generalised additive models, GAM) state function. Each panel is a side-by-side comparison of the mean posterior prediction 
for the relevant model types. The black solid line represents the mean of the posterior predictions from the GAM, while green, blue and 
purple solid lines are from the linear, quadratic and cubic models, respectively. The third panel visualises the difference between the linear 
N-mixture model and N-mixture GAM. The dotted lines correspond to the 95% credible intervals for the traditional model in each panel.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210x.70252 by M

atthew
 L

uskin - Info A
ccess &

 D
elivery Service , W

iley O
nline L

ibrary on [06/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12  |    SASSEN et al.

human footprint followed by a plateau, which was poorly captured by 
the cubic and quadratic models (Figure S3a).

A qualitative interpretation of the relative abundance N-mixture 
results suggests that there were eight combinations (50%) for which 
habitat associations as modelled by the GAM were decidedly non-
linear: wild boar~oil palm (Figure  5b), sambar~oil palm (Figure  5c), 
macaque~forest cover (Figure S1a), muntjak~forest cover (Figure S1d), 
sambar~forest integrity (Figure  S2c), muntjak~forest integrity 
(Figure S2d), macaque~human footprint (Figure S3a) and muntjak~hu-
man footprint (Figure S3d). Sambar deer responses to oil palm cover, 
as modelled by GAMs, were non-linear reflecting an initial increase 
in relative abundance, followed by a steep decline in areas with oil 
palm cover >30%–40%. The sambar linear model poorly captured 
this trend (25.8 NRMSE relative to GAM; Figures 6c and 5c), while 
the predicted response from the cubic model was much closer to the 
GAM (8.5 NRMSE relative to GAM; Figures 6c and 5c). The quadratic 
model (18.6 NRMSE relative to GAM; Figure 5c) differed from the 
cubic and GAM models mainly in the initial steep increase in rela-
tive abundance. Finally, there were also cases where the addition 
of polynomial terms increased deviation from the GAM, indicating 
the linear fit was most appropriate. This was true for macaques and 
muntjac deer responses to oil palm (Figure 5a,d).

The wild boar OccuGAM showed a flat response to nearby 
oil cover initially, followed by a near-exponential increase in 
relative abundance when oil palm cover exceeded ~60% of 
the nearby habitat, reflecting prior work (Luskin, Brashares, 
et al., 2017; Moore et al., 2023). The wild boar quadratic model 
resembled the GAM most closely, while the inclusion of the 
cubic term slightly increased deviation from the GAM, but the 
punctuated increase was a clear feature of all non-linear model 
types (Figure 5b).

3.4  | N-­mixture model predictive performance

N-mixture model predictive performance was similar across all spe-
cies–covariate combinations, with differences rarely exceeding 2σ 
(Figure S6). OccuGAMs were the best performing model in 3 of 16 
cases (18.75%; Figure S6). However, OccuGAMs had a Δ elpd <2σ 
in 14 of 16 cases (87.50%), indicating that predictive performance 
was generally not meaningfully different from the best performing 
model. Simple linear models had the highest predictive accuracy in 
six cases (37.50%), quadratic models in two cases (12.50%) and cubic 
models in five cases (31.25%).

F IGURE  6 Deviation of traditional N-mixture models with polynomial versus OccuGAMs, as measured by the Normalised Root Mean 
Squared Error NRMSE. The NRMSE quantifies the discrepancy between curves derived from mean posterior predictive estimates of  
N-mixture models. The fitted curves illustrate the predicted habitat association patterns for four species of Southeast Asian mammals  
(a: pig-tailed macaque monkeys, M. nemestrina, b: wild boar, S. scrofa, c: sambar deer, R. unicolor, d: muntjac deer, genus Muntiacus) in response  
to disturbance covariates. Each bar corresponds to the NRMSE of a single species–covariate-model combination, with higher NRMSE  
values indicating greater divergence between the GAM and polynomial comparison model.
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    | 13SASSEN et al.

The difference in predictive performance of cubic models com-
pared to the best performing model was >2σ in five cases and the 
best performing model was linear or GAMs in all five of these cases 
(Figure S6). In the cases where cubic models performed the best, 
the functional shape of the GAM often suggested a highly non-
linear relationship (e.g. in macaque~forest cover, Figure S1a; munt-
jak~forest cover, Figure  S1d; muntjak~forest integrity, Figure  S2d; 
sambar~oil palm, Figure 5c), although macaque~oil palm was a clear 
exception to this trend (Figure  5a). Unsurprisingly, GAMs were 
much more flexible than their cubic equivalents, generally achiev-
ing Δ elpd <2σ when the top performing model was simple (e.g. 
wild boar~forest integrity; Figure S6d) or complex (e.g. macaque~oil 
palm; Figure 5a).

3.5  | Differences in predicted responses between 
GAMs and polynomial N-­mixture models

An overview of the NRMSE between the fitted relationships 
modelled by GAMs and their polynomial counterparts across the 
four focal species is presented in Figure 6. We do not assume that 
the GAM represents the true underlying relationship; rather, we use 
it as a flexible reference to show how polynomial models diverge. 
When the NRMSE increases with the degree of the polynomial, the 
GAM suggests a less complex (linear) relationship (e.g. macaque~oil 
palm; Figure  6a). Alternatively, the NRMSE can decrease with the 
degree of the polynomial, which means the GAM suggests a more 
complex relationship that is not adequately captured by second-
degree or even third-degree polynomials (e.g. muntjak—forest cover; 
Figure 6d).

There were 4 (25%) cases in which the NRMSE of the lin-
ear model was lower than for both the quadratic and cubic mod-
els, which means the GAM suggested a ‘simple’ linear relationship 
(Figure 6). Quadratic models most closely approximated the GAM in 
6 (37.5%) cases while cubic models had the lowest NRMSE in the re-
maining 6 (37.5%) cases (Figure 6). Notably, three of these four cases 
comprised a single covariate (forest cover). There were no notice-
able trends in the lowest NRMSEs among species. However, some 
covariate-specific patterns were evident: quadratic models had the 
lowest NRMSE for forest integrity in three of four species. In com-
parison, cubic models most closely mirrored the GAM predictions 
for forest cover in three of four species (Figure 6).

4  | DISCUSSION

We demonstrate the utility of incorporating GAMs into hierarchical 
occupancy and abundance modelling (HOAM) frameworks to 
flexibly model species–habitat relationships while accounting for 
imperfect detection using simulated and empirical data sets. We 
hypothesised that the greater flexibility of OccuGAMs would allow 
them to more accurately recover complex, non-linear species–
habitat relationships compared to polynomial formulations. In line 

with this hypothesis, we found that OccuGAMs outperformed 
polynomial model formulations in their ability to recover non-linear 
species–habitat relationships in most simulated scenarios, showing 
that they can reveal complex habitat relationships that are likely 
to be missed by more constrained models. Moreover, in scenarios 
where the true relationship was linear, OccuGAMs consistently 
ranked second behind the linear model. This demonstrates their 
capacity to adapt to simpler functional forms—an advantage over 
polynomial formulations, which often performed worse due to 
spurious curvature. However, accuracy dropped for low-abundance 
species, reflecting limited information content in the data, which 
makes estimation of non-linear responses inherently unstable.

Overfitting has been a common concern when using GAMs, 
yet penalisation of smooth terms ensures unsupported terms are 
shrunk towards their null space—typically linear or constant forms 
(Miller, 2025). Conveniently, Bayesian software interfaces for fitting 
GAMs also allow for an additional penalty on the null space of each 
term, enabling the complete removal of unsupported terms (Marra 
& Wood, 2011; Miller, 2025). Indeed, we found that OccuGAMs did 
not exhibit the overfitting tendencies of polynomials. In contrast, 
complex polynomials such as the cubic performed worse at smaller 
sample sizes, producing variable and unrealistic predictions. This 
robustness could be particularly valuable in Bayesian frameworks, 
where model selection is not always straightforward and can be 
computationally intensive (Hooten & Hobbs,  2015; Tredennick 
et al., 2021)—positioning OccuGAMs as a practical and reliable de-
fault choice in an exploratory setting when the true shape of the 
response is uncertain. This is critical because the output of a linear 
GLM does not always indicate the need for a more flexible model 
even when warranted (Heit et al., 2024). In addition, we show that 
incorporating GAMs into the detection component of N-mixture 
models yields clear benefits when the true detection probability 
follows a non-linear trajectory. Given that detection processes are 
often complex in real-world systems (Strebel et al., 2014), and that 
fitting a large number of candidate models with alternative poly-
nomial formulations in both the state and detection components is 
computationally infeasible for most researchers, the use of GAMs 
in the detection model should be considered a safe and practical 
solution.

We also showed clear evidence supporting the applicability of 
these models to real-world datasets. Our aim was not to assert that 
the GAM recovers the true functional form in every case, but rather to 
demonstrate that non-linear responses do arise in empirical data and 
that, informed by simulation results, GAMs provide a more credible 
means of representing such structure when it is present. Specifically, 
OccuGAMs produced non-linear response curves in 50% of species 
abundance–covariate combinations, capturing patterns that were 
distinctly non-linear and poorly represented by standard polyno-
mial formulations. In contrast, the occupancy results exhibited no 
pronounced non-linear patterns. This difference may be partially 
attributed to high occupancy of some species (pigs and macaques), 
such that the range of responses was constrained. Another reason 
is that we restricted our analyses to landscapes where the species 
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was detected at least once (e.g. pig-tailed macaque were not pres-
ent in Singapore). Expanding this framework to include landscapes 
from which species have recently been extirpated and extending the 
model structure to explicitly distinguish true absences (Amir, Sovie, 
& Luskin, 2022; Blasco-Moreno et al., 2019) may yield more informa-
tive insights into occupancy.

The case study OccuGAM results were consistent with the eco-
logical findings in previous work, adding confidence. For example, 
wild boar hyperabundance in areas near oil palm plantations is well 
documented, and a comparable pattern has been observed for pig-
tailed macaques (Luskin, Albert, & Tobler, 2017; Luskin, Brashares, 
et al., 2017; Moore et al., 2023). Our results show that while both 
species respond positively to oil palm presence, wild boar abun-
dance increases sharply around 60% coverage, whereas macaque 
abundance increases more gradually and linearly, lacking a clear in-
flection point. In contrast, sambar deer abundance declines sharply 
to near zero around 40% oil palm coverage, though we note that 
the difference between the GAM and the cubic model was small in 
this instance. Notably, pig-tailed macaques also demonstrated dis-
tinct threshold responses to human footprint (negative) and forest 
cover (positive), patterns that polynomial models failed to capture. 
Understanding these non-linear responses can have important im-
plications for real-world management.

GAMs employ data-driven response curves, improving the abil-
ity to detect regions of abrupt change with greater confidence. This 
holds relevance for studies investigating ecological thresholds, an 
area where empirical support remains the subject of ongoing debate 
(Groffman et al., 2006; Hillebrand et al., 2020; Spake et al., 2022). 
Indeed, traditional GAMs lacking detection–correction have been 
applied to identify thresholds in systems ranging from entire ma-
rine communities (Samhouri et  al.,  2017) to grey wolves (Potvin 
et al., 2005). With the advent of country- and continental-scale cam-
era trapping data sets (Bruce et al., 2025; Mendes et al., 2024), often 
including repeated sampling of the same locations, OccuGAMs with 
camera data enable the robust investigation of ecological thresholds 
in wildlife communities that are traditionally difficult to monitor, 
such as tropical mammals inhabiting rainforests (Burns et al., 2025; 
Luskin, Albert, & Tobler,  2017). OccuGAMs remain underused in 
such contexts, presenting an opportunity to address questions such 
as: ‘What proportion of oil palm cover triggers hyperabundance of wild 
boars and macaques?’. They may also be valuable for studying bio-
logical invasions, in which a species' transition from rarity to estab-
lishment often produces non-linear responses along environmental 
gradients (Blackburn et al., 2011). Within HOAMs, smooth effects 
can identify thresholds in occupancy or local abundance, revealing 
the conditions that facilitate establishment and subsequent spread.

Two key limitations may impede OccuGAMs' wider adoption 
among applied ecologists. First, estimating complex relationships 
between the latent state and environmental covariates requires 
sufficient data support across the covariate space, which in HOAMs 
often translates into larger numbers of surveyed sites and increased 
costs (Bruce et  al.,  2025; Guillera-Arroita,  2017). Importantly, this 
challenge reflects the difficulty of resolving functional complexity 

rather than greater data demand of GAMs relative to polynomial al-
ternatives. In penalised GAMs, model complexity is data-adaptive: 
the effective degrees of freedom are controlled by the smooth-
ing penalty (Miller,  2025; Wood,  2017). Consequently, data re-
quirements depend primarily on the complexity of the underlying 
ecological relationship, rather than on the choice of GAMs versus 
polynomial models per se (Wood, 2017). The key distinction is that 
GAMs offer greater flexibility but are more sensitive to model speci-
fication. Choices such as the number and type of basis functions can 
affect the fit, and poor specification may lead to over- or underfit-
ting (Wood, 2017). Consequently, diagnostic tools such as estimated 
degrees of freedom (EDF) must be carefully evaluated to ensure 
the model appropriately captures the underlying non-linearities. 
By default, the widely used mgcv R package (Wood,  2017) imple-
ments thin-plate regression splines (TPRS) for univariate smooths, 
providing a flexible and well-regularised basis suitable for most en-
vironmental covariates, although alternative bases (e.g. cyclic) may 
be preferable where periodicity is known a priori (Wood,  2017). 
TPRS provide a low-rank, isotropic smoother that does not require 
manual selection of knot locations and is well suited to explor-
atory analyses where the true functional form of the response is 
unknown (Wood,  2017). This makes them a pragmatic default for 
modelling potentially complex, non-linear responses of occupancy 
and abundance to anthropogenic disturbance gradients. Regarding 
the number of basis functions, a common strategy is to specify a 
basis dimension K large enough to accommodate plausible eco-
logical responses and rely on penalisation to control smoothness, 
rather than tuning K to optimise fit (Pedersen et al., 2019). However, 
when strong ecological expectations exist, such as single-threshold 
responses often reported for environmental drivers, constraining 
basis complexity can avoid small-scale oscillations and reduce com-
putation time (Large et  al.,  2013; Pedersen et  al.,  2019; Samhouri 
et  al.,  2017). In such cases, modest K values combined with post-
fit diagnostics (e.g. comparing EDF relative to K and re-running the 
model with higher K if EDF≈K) provide a principled balance between 
ecological realism and statistical flexibility.

Lastly, practitioners may be hesitant to use OccuGAMs due to 
the perceived difficulty in interpreting model parameters and as-
sessing their significance (Heit et  al.,  2024). While this concern is 
valid, it also applies to polynomial models, which use multiple co-
efficients to capture non-linearity. Interpretation of GAM smooths 
should move beyond binary notions of statistical significance and 
instead focus on the form and magnitude of effects (Arel-Bundock 
et al., 2024; Pedersen et al., 2019; Simpson, 2018). In practice, this 
involves visualising smooth effect plots, examining EDF to gauge 
complexity: values near 1 indicate near-linear effects while higher 
EDF indicate non-linear responses, and asking targeted questions 
such as where slopes change or effects are strongest across the co-
variate range.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Comparison of the relationships between occupancy 
(left column) and relative abundance (center column) of tropical 
mammals (A: macaque monkeys, M. nemestrina, B: wild boar, S. 
scrofa, C: sambar deer, R. unicolor, D: muntjac deer, genus Muntiacus) 
and forest cover in 10 South-East Asian landscapes estimated using 
Bayesian Occupancy and N-Mixture models with a linear, quadratic, 
cubic or smooth (GAM) function of the covariate.
Figure S2. Comparison of the relationships between occupancy (left 
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column) and relative abundance (center column) of tropical mammals 
(A: macaque monkeys, M. nemestrina, B: wild boar, S. scrofa, C: 
sambar deer, R. unicolor, D: muntjac deer, genus Muntiacus) and 
forest integrity in 10 South-East Asian landscapes estimated using 
Bayesian Occupancy and N-Mixture models with a linear, quadratic, 
cubic or smooth (GAM) function of the covariate.
Figure S3. Comparison of the relationships between occupancy (left 
column) and relative abundance (center column) of tropical mammals 
(A: macaque monkeys, M. nemestrina, B: wild boar, S. scrofa, C: 
sambar deer, R. unicolor, D: muntjac deer, genus Muntiacus) and 
human footprint in 10 South-East Asian landscapes estimated using 
Bayesian Occupancy and N-Mixture models with a linear, quadratic, 
cubic or smooth (GAM) function of the covariate.
Figure S4. Deviation of traditional occupancy models with 
polynomial versus OccuGAMs, as measured by the Normalised Root 
Mean Squared Error (NRMSE).
Figure S5. Relative model performance in predicting the occupancy 
of four tropical mammal species (M. nemestrina, S. scrofa, R. unicolor, 
Muntiacus) across four disturbance covariates.
Figure S6. Relative model performance in predicting the relative 
abundance of four tropical mammal species (M. nemestrina, S. scrofa, 
R. unicolor, Muntiacus) across four disturbance covariates.
Figure S7. Variogram rank across sample sizes for (a) Occupancy 
Models and (b) N-Mixture Models comparing linear, quadratic, cubic 
and GAM hierarchical models.
Figure S8. Declining ability to estimate highly non-linear occupancy 
trends with decreasing sample size.
Figure S9. Declining ability to estimate non-linear abundance trends 
with decreasing sample size.
Figure S10. Energy rank across sample sizes and response types 
for occupancy models comparing linear, quadratic, cubic and GAM 
hierarchical models.
Figure S11. Variogram rank across sample sizes and response types 
for occupancy models comparing linear, quadratic, cubic and GAM 
hierarchical models.
Figure S12. Energy rank across sample sizes and response types 
for N-mixture models comparing linear, quadratic, cubic and GAM 
hierarchical models.

Figure S13. Variogram rank across sample sizes and response types 
for N-mixture models comparing linear, quadratic, cubic and GAM 
hierarchical models.
Figure S14. Discrepancy between true occupancy probability 𝜓 
and occupancy model estimates across base detection probabilities 
(𝑏p0), detection covariates (linear or non-linear) and detection model 
formulations (linear or GAM) formulations measured by the NRMSE.
Figure S15. (a) Example of model fits for a single simulated 
abundance dataset (medium sample size) from the linear scenario 
with linear detection covariate. (b) Energy scores (ES) for each model 
formulation, highlighting differences in ability to recover the true 
shape.
Figure S16. Energy rank across species and response types for 
N-mixture models comparing linear, quadratic, cubic and GAM 
hierarchical models.
Table S1. R̂ exceedance for occupancy model simulation analysis.
Table S2. R̂ exceedance for N-mixture model simulation analysis.
Table  S3. Posterior predictive Checks including Bayesian p-values 
(Goodness-of-Fit) and C-hat (Overdispersion) for 64 univariate 
occupancy models modelling the relationship between relative 
abundance of four tropical mammal species (M. nemestrina, S. scrofa, 
R. unicolor, Muntiacus) and four disturbance covariates, across 10 
South-East Asian landscapes.
Table  S4. Posterior predictive Checks including Bayesian p-values 
(Goodness-of-Fit) and C-hat (Overdispersion) for 64 univariate 
N-mixture models modelling the relationship between relative 
abundance of four tropical mammal species (M. nemestrina, S. scrofa, 
R. unicolor, Muntiacus) and four disturbance covariates, across 10 
South-East Asian landscapes.
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